Carbon dioxide hydrate particles for ocean carbon sequestration

نویسندگان

  • A. C. Chow
  • E. E. Adams
  • P. H. Israelsson
  • C. Tsouris
چکیده

This paper presents strategies for producing negatively buoyant CO2 hydrate composite particles for ocean carbon sequestration. Our study is based on recent field observations showing that a continuous-jet hydrate reactor located at an ocean depth of ~1500 m produced curved negatively buoyant cylindrical particles with diameters ~ 2.5 cm and lengths up to ~ 1 m. Accordingly we performed new laboratory experiments to determine the drag coefficient of such particles and, based on the measured drag coefficient and the initial settling velocity observed in the field, have concluded that the reactor efficiency (percentage of liquid CO2 converted to hydrate) in the field was ~ 16%. Using the dissolution rates observed in the field, we conclude that such particles would ultimately sink to depth below discharge of ~ 115 m. We have also predicted the sinking depth of particles potentially produced from various scaled-up reactors and have shown that, for example, a 10 cm diameter particle produced with a hydrate conversion of 50 % could reach the ocean bottom before completely dissolving. In a real sequestration scenario, we are interested in following large groups of hydrate particles released continuously. We have previously shown that increasing particle size and hydrate conversion efficiency enhances the sinking of hydrate particle plumes produced by the continuous release of CO2 in a quiescent ambient, but that a sufficiently strong current will cause the entrained particles to separate from the plume and settle discretely. In the latter case, particles of different sizes and hydrate conversions (hence different settling velocities) will follow different settling trajectories as they dissolve. This particle fractionation, if employed deliberately, spreads the discharged CO2 in the down current and vertical directions, enhancing mixing, while turbulent diffusion helps spread the CO2 in the third direction. A numerical model that incorporates these processes is used to predict the downstream concentrations and changes in pH from such particle plumes in a ‘strong’ current. An extension of this model simulates hydrate particles that are released continuously from a moving ship. Because of the ship speed, such particles would never form a coherent plume, but the combination of particle fractionation and advection due to the ship motion produces excellent dilution of the discharged CO2. © 2008 Elsevier Ltd. All rights reserved

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessing the Thermodynamic Feasibility of the Conversion of Methane Hydrate into Carbon Dioxide Hydrate in Porous Media

Concerns about the potential effects of rising carbon dioxide levels in the atmosphere have stimulated interest in a number of carbon dioxide sequestration studies. One suggestion is the sequestration of carbon dioxide as clathrate hydrates by injection of carbon dioxide into methane hydrate. Energy-supply research estimates indicate that natural gas hydrates in arctic and sub-seafloor formatio...

متن کامل

Progress in carbon dioxide separation and capture: a review.

This article reviews the progress made in CO2 separation and capture research and engineering. Various technologies, such as absorption, adsorption, and membrane separation, are thoroughly discussed. New concepts such as chemical-looping combustion and hydrate-based separation are also introduced briefly. Future directions are suggested. Sequestration methods, such as forestation, ocean fertili...

متن کامل

Particle laden flows through an inverted chimney with applications to ocean carbon sequestration

Plumes of negatively buoyant hydrate particles, formed by reacting liquid CO2 with seawater at ocean depths of 1000 to 1500 m, have been suggested as a way to help sequester CO2. The vertical flux of CO2 can be increased by constructing a shroud around the hydrate particle source to shelter the plume from effects of ambient stratification and current. The shroud also serves as an inverted chimn...

متن کامل

Direct experiments on the ocean disposal of fossil fuel CO2

Field experiments were conducted to test ideas for fossil fuel carbon dioxide ocean disposal as a solid hydrate at depths ranging from 349 to 3627 meters and from 8 degrees to 1.6 degrees C. Hydrate formed instantly from the gas phase at 349 meters but then decomposed rapidly in ambient seawater. At 3627 meters, the seawater-carbon dioxide interface rose rapidly because of massive hydrate forma...

متن کامل

A new look at ocean carbon remineralization for estimating deepwater sequestration

The “biological carbon pump” causes carbon sequestration in deep waters by downward transfer of organic matter, mostly as particles. This mechanism depends to a great extent on the uptake of CO2 by marine plankton in surface waters and subsequent sinking of particulate organic carbon (POC) through the water column. Most of the sinking POC is remineralized during its downward transit, and modest...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009